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Abstract

This paper presents a simple unifying framework for a wide class of conjugate directions al-
gorithms whose iterates minimize some quadratic functional over a subspace. Our approach is
motivated by its advantages for nonlinear minimization, but the purpose of this paper is to
present the greatly simplified convergence analysis that results for the linear case.
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GENERALIZED CONJUGATE DIRECTIONS

Introduction

We present a simple unifying framework for a class of conjugate directions algorithms for

the solution of the linear system

Az = b, where A€R"*" islarge, sparse, and nonsingular.

The class under consideration consists of algorithms that minimize an error functional over
a subspace or affine space at each step. This class includes the standard and the preconditioned
conjugate gradient algorithms, the conjugate residual algorithm, Craig’s method, Elman’s general-
ized conjugate residual algorithm, Vinsome’s ORTHOMIN algorithm, the ORTHODIR algorithm
of Young and Jea, the GMRES algorithm of Saad and Schultz, and the truncated algorithms
ORTHOMIN(k) and ORTHODIR(s). The main point of this paper is that our approach leads to
a single simple geometric theorem giving the standard convergence results for all the untruncated
methods without the usual clutter of lemmas. Another theorem, which we give without proof
because the proof is so similiar, suffices for the truncated methods. Furthermore, this paper
should help clear up the common misconceptions about the relationship between these methods

and the Krylov subspace.

The approach we have taken in formulating the Generalized Conjugate Directions (GCD)

algorithm is based on an idea suggested to us by Peter Huber, who reported finding it useful in
practice for nonlinear problems. It is implicit in work by others as well, especially Miele and Can-
trell (1969), Cantrell (1969), Cragg and Levy (1969), and Nazareth (1984). The idea is simple; its
key feature is to take the inverse point of view to the usual one of generating conjugate directions
and then minimizing in the last direction generated.

Our formulation is similar in spirit to Axelsson’s generalized conjugate gradient algorithm,
but there is an important difference: we have used a basis for the subspace over which minimiza-

tion must be carried out at each step that allows us to explicitly solve the minimization problem



for the general case. Our formulation facilitates analysis of domains of convergence and the
number of previous directions required to be saved for these algorithms. We show a g-linear con-

vergence rate under a very mild hypothesis for the class of algorithms.

The conjugate directions formulation we use for solving a linear system is also applicable to
the solution by conjugate directions of equality constrained quadratic programming problems, and

we discuss this adaptation of the GCD algorithm.

The Generalized Conjugate Directions Algorithm

Our GCD algorithm is stated as a means of finding the minimizer of the quadratic

g(z) = %zTHx—th,

where we assume H is symmetric positive definite. Thus, ¢(z) has a unique minimizer, and

finding it is equivalent to finding the zero of

ve(z) =Hz-h.
To apply the algorithm to the solution of Az =5, one may use H=A, h =) if A is symmetric
positive definite, or H=ZA, h = 2Zb, where Z is nonsingular and ZA is symmetric positive

definite.

We use the notation

fi =-vq(z) = h-Hz,

and
. = b-Ax, .
The minimizer of ¢(z) is

' =H",

and the minimum value of ¢(z) is

g(z*) = —% RTHh .



We define ||z-2°||f = (z-2*)TH(z - "), and note that

(z-2")TH(z-2") = 2THr -2¢"He* + 2*THz* = 2[q(z)-q(z")],
so that minimizing ¢(z) is equivalent to minimizing ||z -z* || 4.

The GCD algorithm produces a sequence py,ps, - - - of linearly independent, mutually H-
conjugate (p,-THpJ- =0, t¢5£j) directions. Conceptually, we do not choose these directions.
Rather, at each step of the algorithm, we choose a direction d; in any manner whatever, requiring
only that it not be orthogonal to the gradient of ¢ at z,_;. We determine the next iterate z; as

the minimizer of ¢(z) in sp {p,, ..., ps_1, & }, the subspace spanned by {p, ..., ps_1, d¢ }, and define

P =23 — 11 Clearly, the choice of d, which we now discard, determines p;.

For ease of exposition, we use the initial guess zo==0. This is not restrictive. If a better
approximate solution, say £, is known, the problem Az =1b with initial guess # can be solved by

solving A(z -£)=1>5 - A% with initial guess 0. It will be useful to let argénsin ¢(z) denote the
2

minimizer of ¢(z) on §. Our GCD algorithm is as follows.

Generalized Conjugate Directions Algorithm

8

0=0, ?Q=h, k=1
while 7, 7% 0

[~

get di such that df7_; #£ 0

X = argmin q(z)
2€ep{py, ..., Pp_1d4}

Pk = T — Ty

T = T —Hp;



The GCD algorithm with choices of H, h, and d; given in columns 3-5 in the following

table is equivalent to the algorithms named in column 1.

Algorithm Assumptions H k d;

CG A spd A b Th_y

CG applied to A nonsingular ATA ATh Teo1

normal equations

Craig’s Method A nonsingular AAT b et

CR A spd ATA AT et

PCG A spd A b M1,

GCR A+AT pd ATA ATy gy

ORTHOMIN A+AT pd ATA  ATH

ORTHODIR use Z such that ZA Zb dy=b; for k>2,
Z+2Z7 is pd dy=Ap;_y
and ZA is spd

GMRES A nonsingular ATA ATp €{vy ey vp}

CG denotes the standard conjugate gradient algorithm, and CR denotes the conjugate resi-
dual algorithm. For the solution of the linear system Az = b using Craig’s method, put z =ATy
and solve AATy =1b. The computation can be arranged so that iterates in y are not actually
computed. PCG denotes the preconditioned conjugate gradient algoribilm. To solve the linear
system Az =1b using the preconditioned conjugate gradient algorithm, one finds a nonsingular
symmetric matrix C! such that C*AC™! is better conditioned than A, and transforms Az = b to
(CTACT)(Cz)=C"'b. The matrix M that appears in the choice of d, for PCG is defined to be
C?, and is called the preconditioner. Vinsome’s ORTHOMIN using all previous directions is
equivalent to Elman’s generalized conjugate residual algorithm, denoted GCR. The ORTHODIR
algorithm as given by Young and Jea is stated as requiring only that Z be nonsingular and
(ZA)+(ZA)T positive definite, but ORTHODIR is included in the class of algorithms under
present consideration (those algorithms that minimize the error functional ||z -z *||y over a sub-

space or affine space at each step) only if ZA is symmetric positive definite. Young and Jea



require the symmetric part of Z positive definite in order to ensure z; £ 7;_; . We have included
this condition here, and will first discuss the equivalence of ORTHODIR and GCD when this con-
dition is satisfied. Later, we show a way of viewing the ORTHODIR algorithm in our framework
when Z is just nonsingular. The GMRES algorithm of Saad and Schultz does not compute
iterates z; to approximate z°. Instead, it builds an orthonormal basis {vy,..., v } for the Krylov
space K(b,A,n)=sp{b,Ab,..., A"} and, using this basis, determines the solution to Az = b
as the minimizer of ||Az-b ||, over K(b,A,n). The vectors {v;} are determined by Arnoldi’s

method:

b

vl=_—'

el

for yj=1,...,m-1

0j+1 = A‘UJ' - é v;TAv,- LA

=1
_ P
|| 9; 4111

The truncated algorithms ORTHOMIN(k) and ORTHODIR(s) are equivalent to GCD(m), which

Y41

we define later, with the same choices of H, &, and d;, shown for ORTHOMIN and ORTHODIR,

respectively.

Here is the first of our two main results. Notice that the Krylov subspace is totally
separated from the convergence analysis for the general method. Of course, a choice of d; that
implies minimization on a Krylov subspace may greatly reduce the computational complexity of
the associated method, as we shall show. Furthermore, the Krylov subspace is essential to the

Chebyshev polynomial error analysis usually associated with such methods.

Theorem 1: If H is symmetric positive definite, then the following statements are true about the

GCD algorithm:

(1) The algorithm terminates after no more than n steps, and terminates if and only

if Tp_1 — I‘.



(i1) 7; minimizes ¢(z) on sp{p,,..., p:}.

(iii) Every p, generated by the algorithm is nonzero.
(iv) Tip=0,1<j<k

(v) plHp; =0, i 7% j

(vi) dim sp{py,....0x} =k

(vii) pFHp; = p/h for all ¢

If in addition d, € sp{d,, Bp,, ..., Bps_,} for some matrix B, then

(viii) 8p{p1, -, 2} =K(dy, B, k), so that z; minimizes ¢(z) on K(d,, B, k).
(ix) 7 Bp; =0,1<i <k-1.
Proof:

The algorithm can terminate only because some 7, =0. If 0=7;_, =-V¢(2z;_1), then z;_,
is a critical point for ¢. Since V2¢(z,_,)= H is positive definite, this is necessary and sufficient
for z,_,=2*. We shall prove that the algorithm terminates after not more than n steps by
proving (ii) and (vi) for k¥ = n, because then by (vi), R* =sp{py, ..., p } and 2, = z* by (ii).

Let us proceed by induction. For k=1, if Fy(=h)=0, we are finished. Otherwise, we
choose d, such that df7y7£0. We can certainly do this by taking d,=F¥,, for example. Since

d{7y5£0, sp{d,} contains a descent direction for ¢ from z,. Thus,

p1=2,-207#0,

which anchors the induction for (iii) and (vi), and

sp{p,} = sp{d,},

which anchors (ii). Since z; minimizes ¢ on sp{p,}, sp {p,} cannot contain a descent direction

for ¢ from z,. Thus

= -Vq(z))"p, = 7ip1,

anchoring (iv), and this is

= (h _Hxl)Tpl = (h _le)Tpl;



which anchors (vii). Also,

sp{p,} = sp{d,} = K(d,,B,1)

for any B, which anchors (viii). Statements (v) and (ix) are vacuously true.

Now assume that (i)-(vii) hold for 1 < j < k-1. We have already taken care of the case
when the algorithm terminates because 7,_; ==0, so we assume F;_; 0. Then we can choose dj,

and sp {d; } contains a descent direction for ¢ from z,_,. Thus

0 75 T —Tp] = Pk (lll)
Since 2, €sp{py,..., ps1}, and z, €sp{py,..., pp1, dp}, we have d,E€sp{p,,...,px}. By the

induction hypothesis, 7., p;j=0for 1 <j <k-1,s0 dy&sp{py,..,pe}- Hence,

8p {plr "'rpk} = 8p{p1, ooy Ph=1) dk}r (il)

and

dim sp{py,..., p} = dim sp{py, ..., ps1, di }
= dim sp {py, ..., pp_1} +1
—k-1+1=k, (vi).

Since z; minimizes ¢ on sp{p,,..., o},
0=Vg(z)Tp; = ~Fpifor 1< i <k, (iv).

k k
Note that zx = Y p;, so that F, =h - Y Hp;. Thus for ¢ < k,

J=1 J=1
T T, AL T
0= p;7 = pih-Y, pi/ Hp; .
j=1

By the induction hypothesis, this is
= ph — pTHp; - p Hp,

= _piTHpk 3 (V) .

Furthermore,

k
0= pd % = pith— Y, pfHp; = pi'h - p{Hpy, (vii).
izt

Now assume (viii) holds for 1 < j < k-1, and that d; €sp{d;,Bp,, ..., Bps_;}. There exist o and

Bi, 1 £ j < k-1, such that



-1 k-2
dy = ady+ Y, B;Bp; = |ad;+ ﬂ,’BP,'J + Br1Bpi-1 -
i=1 i=1

By the induction hypothesis, for 1<i<k-1, p;€K(d,,B,k-1), so that the first term
€K (d,,B,k-1) and the second term € K(d,, B, k); thus d, €K(d,,B,k). This, together with

8p {ply veey Ph}=8p {Pl, ceey Pk-1s dk}’ gives

sp{p1,....,px} = K(dy, B, k), (viii).
For (ix), observe that by (iv) and (viii), 7 is orthogonal to K(d,,B,k). For i <k-l,

p; €K(dy, B, k-1), so that Bp; €K(d), B, k). e

At each step of the algorithm, z, is to be determined as

Ty = argmin q(z).
3E'P{Pp HEREY /80 d‘»}

Let P, =[p,,..., pk_1,ds], =Py c, and

- 1
Q(c) = q(PkC) = ECT(PkTHPk)C—hTPkC .

Then V§(c)=PIHP,c-PJh. Since H is positive definite and P, has full column rank, PTHP,
is positive definite. Hence, z; can be found by solving the linear system PJHP,¢ =PJh for ¢,

and setting z; = P c.
The matrix of the system of linear equations that determines z, and hence p; is symmetric

with an arrowhead structure in the last row and column by part (v) of Theorem 1. All the stan-

dard recursions for p; in each algorithm follow in an insightful and simple way from the general
solution of the system. The way some algorithms under some assumptions can be seen to need

only p,_; and d; to generate p, is that the last row and column are zero in all but the last two

elements.

By (v) and (vii) of Theorem 1, the linear system PFHP, ¢ = PLh is



piHp, dfHp, ey piHp,
p3Hp, dfHp, cq p3Hp,
pHpey dfHpy| ey pisaHpy
dkTle dkTHpg Coe . dkTHpk_l dkTHdk Cp dkTh

The solution to the linear system is

k-1
p2Hp, dkTh _ 2 d;,THpj
c = . , where a; = A

k-1 (dkTHpj)2

o dfHd, - Y ——1

, Dl 2o,
Pi Hpey

(27

l-a

The numerator of a; is equal to df7_;, and let us define, for 1 < 5 < k-1,

o) _ Z 9 Hp;
’ »{Hp;
Then
47
ay = 1
&’H(de + Y5 B¥p;)
i=1
and

k-1 k-1
X, = Pkc = E p,-+a,,(d,, + E ﬂ,(k)PJ)
j=1 J=1

k-1
= mo+o(dy + Y BFp;).
i=1

When d; is chosen so that dfHp; =0 for 1 <t < k-2, the solution has the shorter form

~dlHp,_ &7y
ﬂkEﬂm=—T—l, U = —p———————— |
pi-1Hpy_y di H(dy + By pi)

and
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T = 2y + o (dg + Bepr-y) -

The standard conjugate gradient algorithm, conjugate gradient algorithm applied to the
normal equations, conjugate residual algorithm, preconditioned conjugate gradient algorithm, and

Craig’s method all choose di so that only p;_; and d; are needed to generate p, and z;.
For CG and CR,

k-1
dk = Tt = b—AIk_l = p - Z Apj,

=1

so that the matrix B that appears in the additional hypothesis of Theorem 1 is A. For CG

dfHp; = vl | Ap; = 7\ Ap;

and for CR

4 Hp; = r[ AT Ap; = 751 Ap;,

since A is symmetric. Thus, for both of these algorithms,

dfHp;, =0 for 1< i < k-2,
by part (ix) of Theorem 1. For CG applied to the normal equations, which we henceforth refer to
as CGNE,
k-1
dy =Ty =h-Hz = h -ngHPj,

and for Craig’s method,

k-1
=1, =b-AATy ,=h-Y Hp;,

j=1

so that the matrix B is H for each of these algorithms, and

dfHp; = 7L Hp; = 0 for 1<i<k-2.

For PCG,

— Ag-l
& = M7,

and B is M'A. Since M is symmetric,

dTHp; =(rF M MAp; = 75 (MA)p; =0 for 1<i<k-2.
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GCR (ORTHOMIN) corresponds to the same choices of H, k, and d; as CR, but since this
algorithm is applied when A is not symmetric, all of the previous directions contribute to the cal-

culation and must be saved.

For ORTHODIR, B is A, and

dfHp; = pl AT ZAp; .
Young and Jea refer to choosing Z such that Z (as well as ZA) is symmetric positive definite as

the “symmetrizable” case. If Z is symmetric, the above is
= (Re—o—Fa-1) T Ap;
so that
dfHp; =0 for 1<i<k-3,

and only the last two previous directions must be kept. If Z is not symmetric, all previous direc-

tions contribute to the determination of the iterates.

We now verify convergence of these algorithms. For convergence of GCD, we require only
that d77_, 50 whenever 7i-1740. This condition is easily seen to be satisfied for CG, CGNE,
Craig’s method, CR, PCG, GCR (ORTHOMIN), GMRES, and ORTHODIR, under the restric-

tions we have shown for the applicability of each algorithm:

CG difF = rfyn

CGNE &Py = TiliTimy

Craig’s method a7 = rline

CR difm = rl A,

PCG o7y = rlaM

GCR, ORTHOMIN 07y = 1 Ary — r,‘T_llélg—‘LT) o

For GMRES, we cannot ensure convergence for general nonsingular A by selecting d; = v;,
but we can guarantee this convergence by a slightly more judicious choice of di, as we shall dis-

cuss momentarily. The choice d == v, gives
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sp{p1, ..o} = sp{dy, ..., d} =sp{vy,....,0} = K(b,A,k)

and

\ k-1

T T

Tt | Ave— Y 5 A‘vk-lv.'J
i=1

=T
T dy =

1o 11

1Ay
| 9 |1
=
FiA Y op

= — =L for some scalars {c;} with ¢, 540

2 1]
(because v, ;¢ sp{p,,..., py_o})
Ch-1 _
= —— Ti-1 (k2= Te-1)
|19 11
S Fioar,
= — k-1Tk-1
[ % |
~ Ck-1
= " TkT:lATk_l.
|19 1

Hence, if the symmetric part of A is indefinite, we may have FLiv =0 at some step before the
minimizer has been found, so that v, will not be a suitable choice for d.. If this should occur,
however, we may select d; and subsequent directions des1y s Ay from {v;,...,v,} in an order
that gives F,?le,, 50 at each step, until z* is found. If 7, v; =0 for all remaining ¢, ¥ <i<m,
then z;_; minimizes ¢(z) on K(b,A,n), and we are finished. We have the latitude of using the
direction vectors {v;} in any order in an algorithm equivalent to GMRES, since the iterates {=:}
are not actually computed in the GMRES algorithm. The point here is that this allows our con-

vergence analysis to apply to GMRES.
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For ORTHODIR, we are assured of convergence using the easily computed choice of d;
shown in the table if the symmetric part of Z is positive definite (or negative definite). If the
symmetric part of Z is indefinite, this choice of d, will not ensure descent at each step. In that
case, we can guarantee convergence by a strategy similar to that employed for GMRES. For

ORTHODIR, using d; = b and d;, = Ap,_, for k>2, we have

divo=0T20,
and for k > 2,

T =T
di Tp_y = i1 Apiy
=T
== Tk ("k-z- "k—l)'

Note that since 7;_, is orthogonal to K(b, A, k-1),

k-2
Thifie = Ty (b-Am o) =7l (b - Y Ap)

f=1

SO

T= __ =T
di Ty = —Tk1Tk-1
. T
= —ri1lr.

Thus, if the symmetric part of Z is positive definite (or negative definite), df7,_, is always
nonzero whenever 7,_; is nonzero, and ORTHODIR converges. Now, if the symmetric part of Z is
indefinite, ORTHODIR is not guaranteed to give descent at every step, but is still convergent.
ORTHODIR generates a sequence of vectors {g;} that are mutually ZA-conjugate (when the sym-

metric part of ZA is positive definite) and that form a basis for the Krylov space K (,A,n).

These vectors are determined as

go=ro=1">

andfork=1,...,¢t

SV
@ = Agy + Eﬂ,( 4,

j=0

where t-+1 is the dimension of the Krylov space K(b,A,n), and for0 < j < k-1,

9f ZA%,

AJ(k) — _
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The ORTHODIR algorithm using an auxiliary matrix Z that is only required to be nonsingular
can be viewed as a GCD algorithm in the following way. The distinct iterates of ORTHODIR are
produced by GCD with the choice dy € {qq, * -  ,q,} , With d; = g,_, provided ¢ T #£0.If
gL Ty =0, then ;-1 minimizes ¢(z) on sp{qo, " * * ,qx1} = K(b,A, k), and this step, which
would give #, = #,_; in the ORTHODIR algorithm, is skipped in GCD. Thus, d; is the first

occurring element of {g;_;, - - - ,¢; } that is not orthogonal to the gradient of g at ;.

The Truncated Generalized Conjugate Directions Algorithm

An alternative to choosing dj so that only a fixed number of previous directions are needed
in the calculations, while still avoiding the increasing storage and work at each iteration associ-
ated with keeping all of the previous directions, is to limit to m the number of previous directions
saved, and at each step to minimize g¢(z) over an affine space that is a translate of
8p{pr ..., Pt-1, & }, where 7=max(k-m,1). This results in the truncated version of the General-

ized Conjugate Directions algorithm.

Generalized Conjugate Directions (m ) Algorithm
$0=0,-f-0=h,k=l.

while 7y 540

do

get dy such that dT7,_; 5£0
7= max(k-m,1)

(=)

Ty = argmin q
z€{a, +ep{p, ..., P 14 }}

Pk = T — %y

T = T —Hp,

k=k+1

end do
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Analogous to Theorem 1, we have our second main theorem.

Theorem 2: If H is symmetric positive definite, then the following statements are true about the

GCD(m) algorithm (Let 7= max(k-m,1)):

(i) The algorithm terminates if and only if z,_j=z".
(i) z; minimizes ¢(z) on {z,;+8p {pr, .., Pr }}-

(iii) Every p, generated by the algorithm is nonzero.
(iv) Tip; =0, r<;j<k

(v) pHp; =0, i%#j, |i-j|<m

(vi) dim sp {p,, ..., ps } =k-7+1

(vii) pfHp;=pfF,, << k

The proof of Theorem 2 is similar to that of Theorem 1, and is omitted.

The linear system that determines z; in the GCD(m) algorithm is analogous to that of the

GCD algorithm. At each step of the GCD(m ) algorithm, z, is chosen to satisfy

Ty =

q(z).

argmin
z€{z,  +ep{py ..., 014 }}
Let Pk=[pn <. )pk-—lrdk]r T =12+ Pic, and
R 1
§(c) = q(Pre +2,.4)= ?(P,,c +2.) H(Pye + 201)-h T (Prc + 2,.9).

Then V§(c)=PIH(Pic +2,,)-Pfh. P, has full column rank, so that PTHP, is positive
definite, and z; can be found by solving the linear system P{HP, ¢ = PI(h-Hz,,) (= P{F,.,) for

¢, and setting 1, = 2, + Psc.

The solution to the linear system is
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PrTHdk
1 - Qg T
p:Hp, — k-1 r
di Ty - Y, di Hp;
c = : , where ap = i~ -
: k1 (dg Hp,)
—a oL Hd, dfHd, - Y m’—-
- Q) ——— - THy.
pk{alk—l =
3 ak -

Again, we define for 7< 5 < k-1

0 _ GHp;
! pjTHp,-
Then

T_
di Tey

k-1 ’
dFH(d + Y B9p;)

j=r

o =

and

k-1 k-1
G =2 +Pc =2+ Y, pi+a(d+ Y B¥p;)

J=r =T

k-1
= n+o(d+ Y 8Fp;).

j=r

To ensure convergence for the truncated version of the algorithm, we slightly strengthen the
requirement that dy not be orthogonal to the gradient of ¢ at z;_;, asking that the angle between
d; and 7,_,; be bounded away from 90°. We use the notation k(H)==pna(H)/Amin(H) for the

condition number of a symmetric positive definite matrix H.

The following theorem shows a g-linear rate of convergence for the entire class of GCD(m)
algorithms. But it is pessimistic because the rate constant that appears is a lower bound on the
amount of reduction that would be achieved with a GCD(0) algorithm. We shall remark at the
end of the section on the relationship between this bound and other .bounds given for special

cases.

Theorem 8: If H is symmetric positive definite, d, 20 for all k, and there exists v > 0 such that
| df7ei| =411 de ll2]| Feer||2 for all k, then the sequence of iterates {z;} gencrated by a

GCD(m) algorithm converges to z° and satisfies
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1
lae=2"lla < [1- 2] Fllawa=2" Il

Proof:

If 7_; =0 for some k, then z,_;=2z°. Assume F,_; 540 for all k. Then

1 1
q(z) - g(21) = ?(Ik—l + Pk)TH(xk—l +pi)-h T(Ik-l + i )- Y ol Hry +h Tz
1
= pfHz, |+ - piHp, - pfh

— 1 '—
= —pfTh_1 + ) T

1
= - E‘ PkT"k-l ,

am) = 3 a(z;)-a(z;0)

J=1

1 k
=_?¥ 7.1 < 0.

k
Since H is positive definite, ¢(z) is bounded below, so we conclude that lim Y pf7;,

exists. Hence, klim pfF =0, and
00
T T LI
Tiipe = Tia [ (de + Y5 BMp;)]

J=r

= a;Firyd}
(Fiy dk)2

k-1 32
dfHd —_—
£ Jgf PJ'THP:'

Since all the terms in the summation are nonnegative, this is

> (1)

= T4THd,
AL HIEATE
- )‘max( )“dkH2
2
2l = 2
= — T > 0.
)‘max(H) ” kl“2

We have 0= lim 7 ;p;, > hm 1%e1 ]2 > 0, so that {7} converges to 0. Since H
k—o0

,.12
max(H)
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is positive definite, this is necessary and sufficient for lim z, = z”.
k—o0

We have
1
q(ze_1)-q(2) = ?Pk Te1
1 —
= Eakdkrrk—l
+ _
> —1 ___ 5.2,
Z Do) e |5
and
l|ze—2* || § = 2lg(z)-q(z*)]
= 2[g (=) - g(2e1) + 9(2-1) - q(=°)]
< L A At S T E - 2
- ”zlt—l T ”H xm“(H) ”rk-l||2‘
Now
7(z) = h-Hz = H(z' ~z),
so that
llz-2"||§ = Fla)T H'7(a),
and
NFe1 115 > NeialH) | 251-2" || &
Thus,

'72>‘min(H) ||Z _20”2
Mans(E) T

— (1) Hava-a iz

o2 || F< || 2er-2 || & -

Convergence of ORTHOMIN(k) is quickly and easily verified. For ORTHOMIN(k),

di =141, and

A+AT

Te T AT, __.T T
Ty =ri A ey =rijAn = 15 ("2—) TE_y.

With the assumption that the symmetric part of A is positive definite, our hypothesis is

satisifed.
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A+ AT

Let M = . Then

&FF = rfaMr .y > Mn(M) || 1y || 2

kmin(M)

= ——— (| AT |l2]] rea 211 di |2
HAT|[,
Xmin(lu)

> — || 7 .

> T allall4lle

If the symmetric part of A is negative definite, we can use the bound

| &t | = [rEaMriy| = ~Mad M) || 1t |15

If the symmetric part of A is indefinite, convergence of ORTHOMIN (k) is not guaranteed.
The algorithm can fail to produce descent at some step in that case, since dfF_, = rL ,Mr,_; can

be zero without r,_; being zero.

The bound ~ that appears in Theorem 3 is easily obtained for CG, CGNE, Craig’s method,
and PCG. For CG, CGNE, and Craig’s method, dfF_,= || ds ||2||Fe-1||2, so that y=1. ‘We
have already established a bound for ORTHOMIN (k), which also applies to CR, GCR, and

ORTHOMIN. Similarly, for PCG one can obtain v=1/x(M™).
A better convergence rate constant than that shown in Theorem 3 can be obtained for par-
ticular choices of H and d;,. From the proof of Theorem 3

(&)

_ > = 5
g(ze)-gq(z) > 2d,,THd,, )

which gives

(dfFe)?

2 2
Ha—2' |7 < || 2e1—2" || F- aTHd,

and it may be advantageous to use this rather than the coarser bound involving 4 when dy and H

are known. For example, for CR, GCR, ORTHOMIN, and ORTHOMIN(k),

H=ATA, dy=r,, i =ATr, and ||z -2 || F = |In |5,

so that
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417_,)? rd Are)? A2 (M T
(l:Tk l) — (Tlek l) Z mln(T) ”rk-1||22: where M — A+ A ,
dk Hdk rk-lA Ark—l >‘max(A A) 2
and
12 < (1220 )0 e
2 = TN AT N k-11]2 -
Amuc(4TA)

Elman (1982) derives this g-linear error bound on {||r ||z} on page 49 in the proof of his

Theorem 5.9. However, he weakens it in the statement of the theorem to the r-linear error bound

A (M) F
2 min 2
T < | 1-— .
112 < (122 Hivoll2
For PCG,
H=A,6d,=M"r,_,,where M == C? is the preconditioner, 7, = r, ,
(6T (M) [(C'ry)T(C7lmy)? || C'ra |2

fHd, L MUAM e (Cn)T(CTTACT)(C) T Ml CTACT)
Amin(CAC™) || 2e1—2" || X

> MY X et |12, = ek 2 1A
= Al CTACT & el oamse s(ClACT)

and

112 1 .12
T -2 L | l-——7-—r]llzpy-2 .
llae=2"1% < {1ty Hara-2" 112
This g-linear error bound implies the weaker r-linear error bound
1 k
-z’ 2<[1——-] zo-2"|%.
llew=2113 < (1= gy ] Mooz I3

The Chebychev polynomial approach yields only an r-linear error bound, but it is much better

L
2

than the r-linear error bound above, since x(C'AC™)? appears in place of K(CTAC?) .

Conjugate Directions in Quadratic Programming

The formulation of the generalized conjugate directions algorithm that has been presented
for solving systems of linear equations can be readily adapted to give a conjugate directions algo-

rithm for solving the equality constrained quadratic programming problem
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minimize  ¢(z) = -;—::THz—hTz
subject to Az =0,
where we assume that H is symmetric positive definite on the nullspace of A, and that A has full

row rank. Given an initial feasible point, a problem with inhomogeneous constraints can readily

be put in this form.

Starting with the initial feasible point zo==0, the algorithm will maintain feasibility at each
step, and will produce a collection of linearly independent, mutually H-conjugate direction vec-
tors {p;} as in the GCD algorithm. Here, the direction vectors will all be in the nullspace of A4,
and the algorithm will terminate after no more than s steps, where s is the dimension of the

nullspace of A. The case where A is the row of all ones arises in some problems from conserva-

tion laws.

Let P denote the projector onto the nullspace of A: P=I-AT(AAT)'A. To solve the

quadratic programming problem, the GCD algorithm is modified so that the termination criterion

is that the projected gradient, Pr;_,, is zero, and at each step we

choose d; so that d; is not orthogonal to the projected gradient of ¢ at the current point:

4l PFy_ 5 0;
let, (2,, =Pdk;

minimize ¢(z) over sp {py, ..., Pr_1, d } .

Since P is symmetric, dfPf,_, = 3,,7'?",,_,, so that the modified algorithm operates in exactly
the same way as the GCD algorithm, and Theorem 1, with n in part (i) changed to s, applies to

the quadratic programming conjugate directions algorithm.
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